Climate Recovery Duct System Technical Specifications

Welcome to Climate Recovery

Overview	3
CR Duct	5
Pressure Loss	6
Sound	7
Insulation	8
CR Bends	
45 °	11
90°	12
T-piece	13
CR Accessories	15
Proper Hanging	17
Installation	18
Build-in Alternatives	19
Installation pictures	20

Climate Recovery (CR) Duct System

Overview

The CR Duct System offers a complete, pre-insulated ductwork system for heating, ventilation and air-conditioning.

CR Ducts and CR Bends consist mainly of glass, sand, and soda. CR Ducts and CR Bends both possess patented aluminum CR Foil on inner and outer surfaces, which provides a condensation barrier.

CR Ducts are standardly mounted round but, through use of the CR Transformer, can be made rectangular when necessary.

Applications

The CR Duct System can only be used for indoor installations.

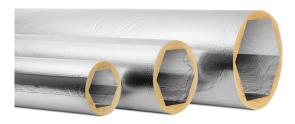
CR products are not to be used for kitchen exhaust.

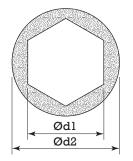
Local rules and regulations are to be recognized when installing any CR products.

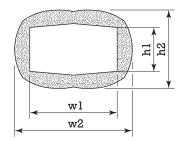
EN	JOY WORK	Lightweight	Adaptability	Round/ rectangular	Pre-insulation	Noise reduction
ESS	Labor savings	~	~	\checkmark	~	\checkmark
Z	Material savings		\checkmark	\checkmark		\checkmark
USI	Product offering expansion	\checkmark			\checkmark	
8	Installation quality				\checkmark	
ATE	Better brand image					
H	Planning facilitation			\checkmark		\checkmark
CR	Lifecycle costs			\checkmark		

Climate Recovery (CR) Duct System

CE-test certifications & working conditions							
Tightness	Class D		EN 1507:2006				
Fire Classification	A2-s1,d0		01 1.0007 + 81.0000				
	Unburnable	EN 13501-1:2007+A1					
Pressure			EN 13403:2003				
Max Under	-400 Pa	Shock waves	-1000 Pa				
Max Over	+1000 Pa	Shock waves	+2500 Pa				
Heat Transfer (λ)	$\approx 0.035 W/mK$						
Temperature							
Minimum	-40° C	Maximum	+60° C				


Certifications


The CR Duct System has been certified through RISE, the Swedish governing body for CE certification and accreditation.


European Technical Assessment (ETA) 17/1007 was issued on the basis of EAD 360001-00-0803.

Sustainable materials	CO ₂ reduction	Self-supporting	No vibrations	No heat transfer	Reopening	Standard dimensions
		~	~	~	\checkmark	\checkmark
			~	\checkmark	\checkmark	
~					\checkmark	\checkmark
		\checkmark				\checkmark
~	~			\checkmark		
~			~	\checkmark	\checkmark	\checkmark
		\checkmark			~	

CR Duct

CR Ducts are made of compressed glass wool with inner & outer surfaces covered by a layer of CR Foil.

All CR Ducts are shipped 235 cm long.

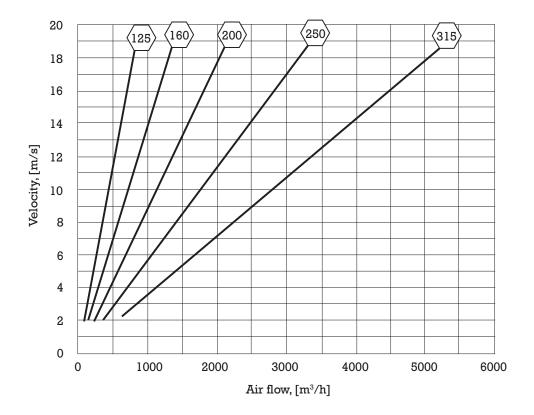
All CR Ducts are shipped vacuum packed.

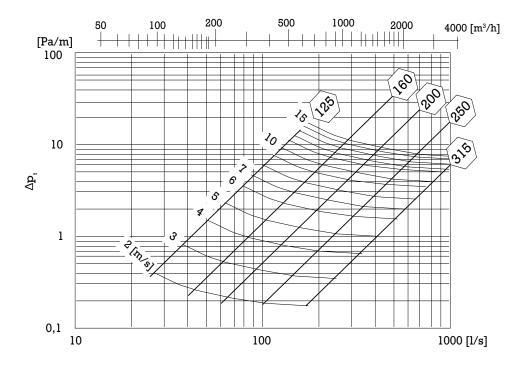
Average insulation thickness \approx 30mm.

Water vapor resistance > $140m^{2}h$ Pa/mg

Round

Ødl*	1	Ød2	kg/
mm	mm	mm	m
125	2.35	195	0,98
160	2.35	230	1,19
200	2.35	270	1,49
250	2.35	320	1,83
315	2.35	385	2,21


Rectangular


Ødl	wl	hl	w2	h2
mm	mm	mm	mm	mm
125	140	75	200	135
160	188	94	258	166
200	220	115	280	175
250	283	141	358	221
315	340	175	400	225

*True inner Diameter ≈10–20 mm larger than Ød1

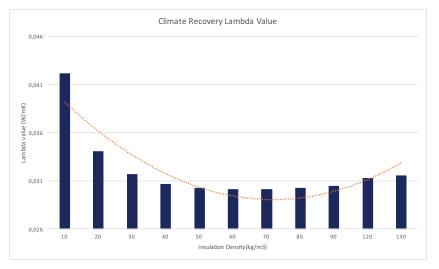
CR Duct – Pressure loss

CR Duct – Sound

CR Duct Sound Reduction, L_{w} room – L_{w} duct								
Octave band, Hz	63	125	250	500	1000	2000	4000	8000
CR 125, 2.35 m	22	30	33	37	40	47	55	60
CR 160, 2.35 m	21	29	32	36	39	46	54	59
CR 200, 2.35 m	20	28	31	35	38	45	53	58
CR 250, 2.35 m	19	27	30	34	37	44	52	57
CR 315, 2.35 m	18	26	29	33	36	43	51	56

Damping in a CR Duct – 2.35 m								
Octave band, Hz	63	125	250	500	1000	2000	4000	8000
CR 125, 2.35 m	5	4	6	20	43	31	16	8
CR 160, 2.35 m	5	5	8	36	48	25	15	8
CR 200, 2.35 m	4	3	8	36	41	20	10	7
CR 250, 2.35 m	3	4	10	28	39	20	12	7
CR 315, 2.35 m	2	9	15	29	35	19	11	6

CR Duct - Insulation


How CR's increased density affects minimum requirements

The goal is to clarify the CR Duct insulation value against an insulated steel duct.

Steel possesses a high thermal conductivity and releases all heat, so the temperature drop across the duct walls is minimal. Heat transfer on the inside of the duct, either of steel or aluminum, similar to CR, minimally affects the total heat transfer. The heat transfer on the outside of the insulation is even less affected; roughly 80% of the value is impacted by insulation quality, its density and how it is applied.

The real difference is that CR offers a truly high quality insulation with no cold bridging and an effective vapor barrier (>140m³h Pa/mg) on both inside and outside of the duct. The insulation itself should not come in contact with air on the inside or outside of the duct, otherwise there is the potential for condensation.

Climate Recovery allowed an outside institute to research the connection between insulation values and density utilized in CR Products.

Results show that the λ -value at 10kg/m³ \approx 0,040W/mK and drops to slightly below 0,030 at 70kg/m³. After this, the 1-value increases as density increases. In CR Products, density ranges from 60 to 80 kg/m³, thus in the most favorable insulation conditions.

The density of insulation that is placed on ventilation ducts today is much lower. It would be extremely difficult to handle an insulation blanket of a comparable density to CR.

CR Duct - Insulation - 0,045 W/mK

DIN 1946 part 6 stipulates the minimal insulation thickness that is accepted in comparison to the difference in temperature between air inside and outside the duct.

This norm writes that the recommended insulation thickness is based on λ -value = 0,045 W/mK.

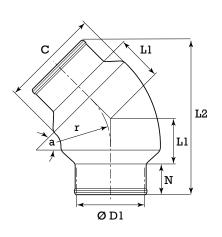
		Ambient air temperature and insulation thickness λ = 0,045 W/mK						
Type a:	nd temperature of air		Outside the inside b			inside the	inside thermal shell	
i	nside ductwork	< 10°C (i	nner roof)	< 18°C	(cellar)	≥ 1	8°C	
		minimum mm	improved mm	minimum mm	improved mm	minimum mm	improved mm	
Fresh Air T		25	25	40	40	60	60	
Supply T	without heat recovery	25	25	40	40	60	60	
$\begin{array}{l} Supply T \\ \leq 20^{\circ}C \end{array}$	with heat recovery	25	40	10	25	0	0	
$\begin{array}{l} Supply T \\ \geq 20^{\circ}C \end{array}$	with return heat pump	40	80	25	40	10	25	
$\begin{array}{l} Supply T \\ \geq 40^{\circ}C \end{array}$	heating	60	80	40	60	25	40	
Return / Exhaust	without heat recovery	40 40 25		25	0	0		
Exhaust	with heat recovery a/o return heat pump	20	20	30	30	25	40	

To be on the safe side, CR has calculated a λ -value at 0,03235 W/mK.

CR Duct - Insulation - 0,03235 W/mK

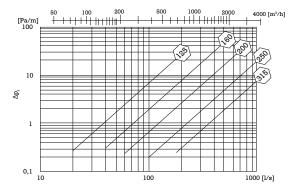
		Ambient air temperature and insulation thickness λ = 0,045 W/mK						
Type a	Type and temperature of air		Outside the inside k			inside the	inside thermal shell	
in	nside ductwork	< 10°C (i	nner roof)	< 18°C	(cellar)	≥ 1	8°C	
		minimum mm	improved mm	minimum mm	improved mm	minimum mm	improved mm	
Fresh Air T		18,1	18,1	28,9	28,9	43,3	43,3	
Supply T	without heat recovery	18,1	18,1	28,9	28,9	43,3	43,3	
$\begin{array}{l} Supply T \\ \leq 20^{\circ} C \end{array}$	with heat recovery	18,1	28,9	7,2	18,1	0,0	0,0	
$\begin{array}{l} Supply T \\ \geq 20^{\circ}C \end{array}$	with return heat pump	28,9	57,8	18,1	28,9	7,2	18,1	
$\begin{array}{c} \textbf{Supply T} \\ \geq 40^{\circ}\textbf{C} \end{array}$	heating	43,3	57,8	28,9	43,3	18,1	28,9	
Return / Exhaust	without heat recovery	28,9	28,9 28,9 18,1		18,1	0,0	0,0	
Exhaust	with heat recovery a/o return heat pump	14,4	14,4	21,7	21,7	18,1	28,9	

The suggested minimum insulation thickness should therefore be:


For example, the minimum requirement is achieved in all cases, save for when outside air is introduced directly to room temperature areas and with supply air temperatures above 40°C. In order to achieve the higher demands, only 30 mm of normal insulation is required.

The end result is that the CR Duct System significantly simplifies and secures the necessary insulation quality.

CR Bend


 $r\approx \textit{ØD1}$

CR Bends are made of compressed glass wool with inner & outer surfaces covered by a layer of CR Foil.

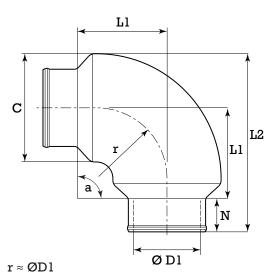
Average insulation thickness ≈ 30 mm.

Standard circular sheet metal nipples fit inside neck of CR Bends.

Water vapor resistance > $140m^2h Pa/mg$

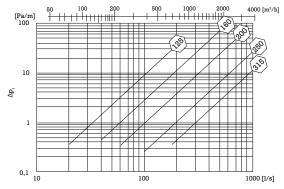
Damping in a CR	Damping in a CR 45° Bend							
Octave band, Hz	63	125	250	500	1000	2000	4000	8000
CR 125, Bend 45°	0	2	1	1	2	4	4	3
CR 160, Bend 45°	1	1	0	0	1	3	3	3
CR 200, Bend 45°	1	2	2	2	3	5	5	2
CR 250, Bend 45°	0	1	1	1	4	5	4	2
CR 315, Bend 45°	1	1	2	4	6	6	3	2

ØD1	С	Ll
mm	mm	mm
125	192	84
160	233	98
200	267	115
250	317	136
315	382	163


ØD1	L2	Ν	kg/
mm	mm	mm	piece
125	298	63	0.43
160	353	73	0.60
200	412	83	0.90
250	482	93	1.10
315	568	103	1.32
	mm 125 160 200 250	mm mm 125 298 160 353 200 412 250 482	mm mm mm 125 298 63 160 353 73 200 412 83 250 482 93

45°

CR Bend



CR Bends are made of compressed glass wool with inner & outer surfaces covered by a layer of CR Foil.

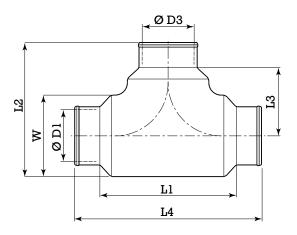
Average insulation thickness ≈ 30 mm.

Standard circular sheet metal nipples fit inside neck of CR Bends.

Water vapor resistance > $140m^2h Pa/mg$

Damping in a CR 90° Bend								
Octavband, Hz	63	125	250	500	1000	2000	4000	8000
CR 125, Bend 90°	1	1	1	2	3	9	7	3
CR 160, Bend 90°	1	1	1	1	3	7	7	3
CR 200, Bend 90°	1	0	1	2	5	7	7	3
CR 250, Bend 90°	1	0	2	5	9	9	5	2
CR 315, Bend 90°	0	0	2	5	10	11	5	2

ØD1	С	Ll
mm	mm	mm
125	192	157
160	233	192
200	267	232
250	317	282
315	382	347


ØD1	L2	N	kg/
mm	mm	mm	piece
125	306	63	0.54
160	381	73	0.90
200	449	83	1.50
250	534	93	1.90
315	641	103	2.20

90°

CRT-piece

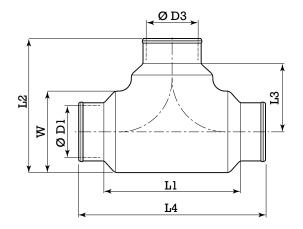
CR T-pieces are made of compressed glass wool with inner & outer surfaces covered by a layer of CR Foil.

Average insulation thickness ≈ 30 mm.

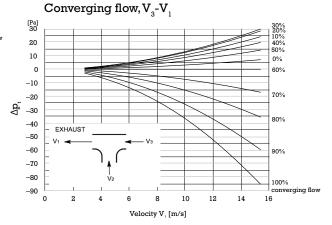
The standard circular nipple fits inside the neck of the CR T-piece.

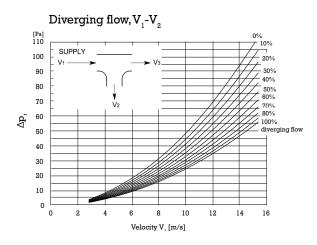
Water vapor resis	stance >	140m ² h	Pa/mg

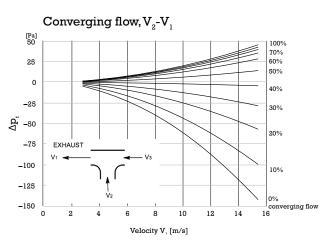
Damping in CR T-Piece – Straight flow								
Octave band, Hz	63	125	250	500	1000	2000	4000	8000
CR 125/125 T	1	0	1	0	1	2	4	4
CR 160/160 T	0	2	2	2	3	5	6	4
CR 200/200 T	-1	1	2	1	2	7	5	6
CR 250/250 T	0	2	2	1	3	6	6	3
CR 315/315 T	0	1	1	2	4	9	7	3


Damping in CR T-Piece – Branch flow								
Octave band, Hz	63	125	250	500	1000	2000	4000	8000
CR 125/125 T	3	3	2	1	1	7	8	6
CR 160/160 T	2	2	2	2	4	6	10	6
CR 200/200 T	1	2	2	1	6	8	9	5
CR 250/250 T	0	2	1	1	4	8	8	5
CR 315/315 T	-1	1	1	3	5	9	8	4

ØD1	ØD3	Ll	L3	L2
mm	m	mm	mm	mm
125	125	314	157	318
160	160	384	192	380
200	125	464	184	381
200	200	464	232	449
250	250	564	282	536
315	125	694	242	496
315	200	694	280	554
315	315	694	347	641
ØD1	ØD3	L4	w	lrcr/
	603	П4	vv	kg/
mm	m	mm	mm	piece
125	125	440	192	0.80
125 160	125 160	440 530	192 233	0.80 1.20
160	160	530	233	1.20
160 200	160 125	530 630	233 267	1.20 1.64
160 200 200	160 125 200	530 630 630	233 267 267	1.20 1.64 1.80
160 200 200 250	160 125 200 250	530 630 630 750	233 267 267 317	1.20 1.64 1.80 2.40




CRT-piece – pressure loss



Diverging flow, $V_1 - V_3$ [Pa] 50 100% diverging flow SUPPLY 45 V1 40 90% 35 80% 30 v2 ∆p 25 70% 20 60% 15 50% 10 40% 30% 5 20% 0 10% 0 14 2 4 6 8 10 12 16 Velocity V, [m/s]

CLIMATE RECOVERY_®

CR Nipple

CR Adapter

CR Nipples connect two CR Ducts together.

Made of galvanized sheet metal.

CR Adapters connect products with standard circular nipple dimensions to the corresponding CR Duct sizes.

Made of galvanized sheet metal.

CR Sleeve

CR Sleeves cover the ends of CR Ducts when joints are created.

Made of polyurethane mixture, including flame retardant.

CR Clamp

CR Clamps tighten CR Ducts around joints created.

Made of stainless steel.

Utilize hex bit, size 8.

CR Transformer

CR Tape

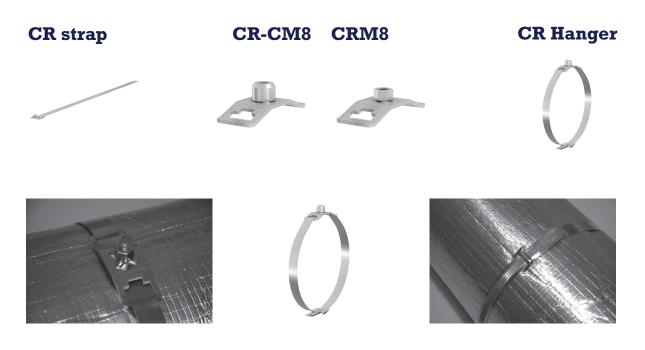
CR Transformers are placed around CR Ducts when installations require rectangular dimensions.

Made of .7mm plate steel, coated with aluzinc.

CR Tape is non-reversible.

Made of aluminum foil with tightening glue.

Width: 50mm 100mm


Proper Hanging

Attachment to the structure

This should be done in accordance with building specifications per standard EN 12236 protocols. When mounting the CR Duct System to the fixed building structure, M8 steel threaded rod should be used. CR-CM8 has a click function that allow attachment by directly pressing M8 rods into the fixture. CRM8 must be screwed onto the fixture.

Hanging support

CR Straps should be drawn through the openings of CR-CM8 or CRM8 fixtures. The flat end of the strap is then wrapped around the exterior of the CR Duct, then through the fixed end and secured by the ridged bindings. Leaving a loose binding before hanging will allow easier adjustments made to the placement of M8 fixtures along the duct surface.

Hanger spacing

Hanging support of the CR Duct System should be maintained at a minimum of every 2.3 meters of duct length and within 10 cm of any joint.

If CR products are installed vertically, the support must be placed a minimum of 50 cm from joint connections, with further support spaced at a minimum of every 2.5 meters.

When combining the CR Duct System with sheet metal ductwork, support should be placed within 10 cm of joints and every 2 meters.

Installation

CR Sleeve

CR Tape

CR Duct-Duct with CR Tape around CR Nipple

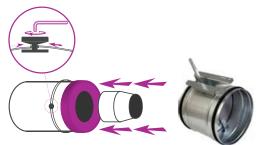
Soap on sleeve and Bend neck

Attach, let dry, tape around

CR Transformer

Rectangular

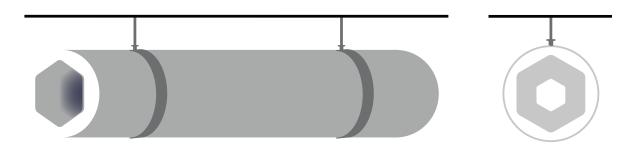
CR Fittings with standard round duct applications


Standard dimension round nipples fits into the CR Fitting, which allows for connections between normal round sheet metal ducts and the CR Duct System. To secure, place CR Tape around the circumference of the joint, covering the ends of both duct and fitting.

Make sure to use nipples and adapters with rubber sealing. This creates a tight seal and reduces leakage. Using nipples or adapters without rubber sealing can harm the inner foil of CR Fittings, so we advise not to use these.

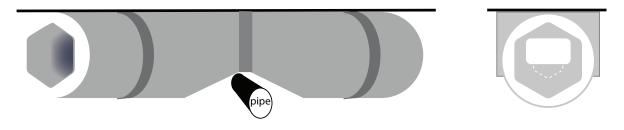
CR Duct to sheet metal ducts and accessories

CR Adapter + metal nipple with gasket + sheet metal duct

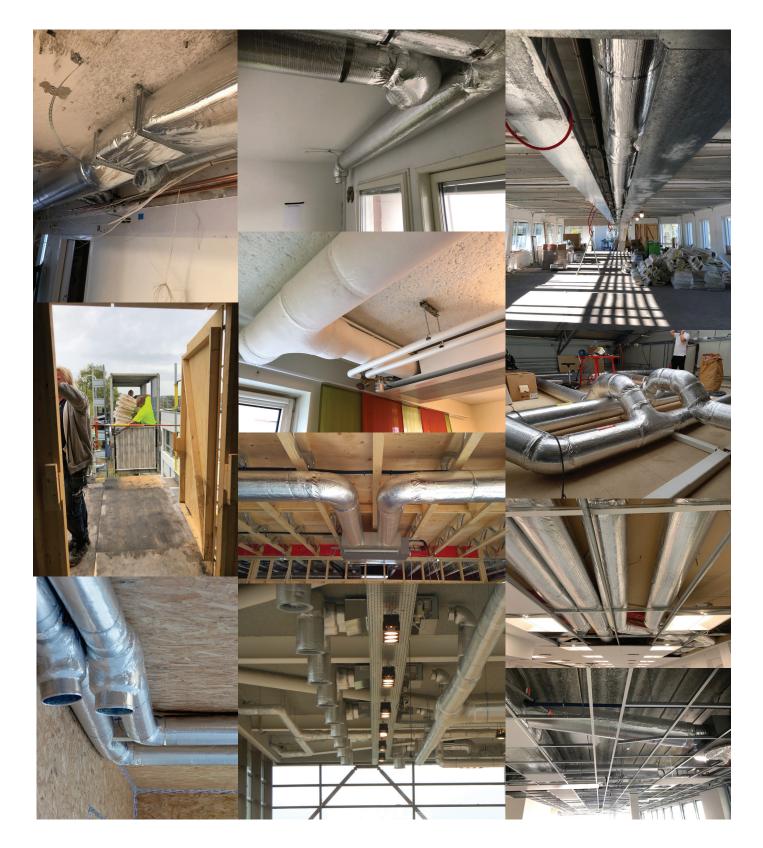

CR Clamp outside CR kanal with CR Adapter + sheet metal accessory with gasket, e.g. fire damper

Build-in Solutions

The fact that CR Ducts can be installed both round and rectangular offers building solutions that have never before been possible at reasonable costs.


The most natural solution is to mount CR Ducts round and hang them in a standard way.

As CR Ducts don't vibrate or transfer vibrations, it is possible to place directly against the inner ceiling, secured with approved ventilation hanging straps.



Often it is a single obstacle that prevents the opportunity to install larger dimensions of ductwork. CR Ducts can be made rectangular with a CR Transformer to bypass these obstacles and utilize the available space with lower pressure drops and increased air volumes.

This mounting gives a localized pressure drop of 1 Pa.

Installations

Notes

C C C C C C C I M A T E C L I M A T E R E C C L I M A T E R A T E C C I I M A T E C C I I M A T E C C I I I D C I I I I I I I I I I
N T RECOVERY

Enjoy work Create business www.climaterecovery.com

Disclaimer

All information in this document is subject to change at the discretion of Climate Recovery.

Information is offered with no obligation to the end user or application. All photos, logos, and branding within this document is the property of Climate Recovery and is not to be reproduced without prior written consent.

